9 (x)= max f (x, §)

vEox)
is continuous, and the m-mapping F:X - K(Y)
F(x)={ylye®(x}, f(x, ) =9 (x}}

is upper semicontinuous.

3. Continuous Sections and Single-Valued Approximations of m-Manpings

Let X, Y be topoclogical spaces, and let £:X » Y be an m-mapping.

1.3.1. Definition. A continuous, single-valued mapping f:X » Y is called a continuocus
section of an m-mapping F if

f(x)€F (x)
for all x6X.
The existence of continuocus sections is closely comnected with lower semicontinuity of

a multivalued mapping. The following assertion characterizes this fact.

1.3.2. THEOREM. Let F:X » P(Y) be an m-mapping. If for any points x€X and y6F(x}
there exists a continuous section f:X + Y of the m-mapping F such that f(x) = y, then F is
a lower semicontinuocus m-mapping.

Michael's theorem is one of the basic results of the theory of continuous sections which
has found many applications.

1.3.3. THEOREM. The following properties of a T,-space X are equivalent:

a) X is paracompact;
b) if Y is a Banach space, then each lower semicontinuous m-mapping F:X » Cv(Y) has a
continuous section,

The proof of Theorem 1.3.3 is based on the following assertion.

1.3.4, LEMMA., Let X be a paracompact space, and let Y be a normal space; let F:X >
Cv(Y) be a lower semicontinuous m-mapping; then for any € > 0 there exists a continuous
single-valued mapping £c:X > Y such that [.(x) €U, (F(x)) for any x€X.

This mapping f. is naturally called an e-section of the m-mapping F.

There are many examples which show that the conditions of completensss of the space V,
closedness and convexity of the range of the m-mapping ¥, and the condition of lower semi-
continuity of this mapping are essential for the existence of a continuous section. However,
it is obvious that there =xist m-mappings which are not lower semicontinuous but have a con-
tinuous secticn. We shall consider the problem of the existence of a continuocus section in
terms of the local structure of m-mappings (see [22]).

pact subset of the Banach space E, and let
F:X » Kv(Y) be some m-mapping. We set F*(x)=U,(F{(x)})1Y. For each point %€X we define the
set L(F)(x,) by the rule

Let X be a metric space, Y be a convex comp

L=, (4 {0 FR)

>0 (620 LrGUs(x0)

1.3.5. THEOREM. In order that an m-mapping F:X - Kv{(Y) have an e-section for any
€ > 0 it is necessary and sufficient that L{F)}(x,) # @ for any x€X.

We remark that nonemptiness of the set L{G){x) for any x6X does not yet guarantee the
presence of a continuous section of an m-mapping F.

We consider iterations of L:
LOFYy=F, L"{Fy=L{LYF, n=l

We continue this process for each transfinite number of first type, while for & transfinite
number of second type we set

Y LHFY (=)= L°(F) ().

e et
: 3
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We shall say that the sesquence {L®(F)} stabilizes ac step o, if
L% (F) (x)=L""" (F) (x)
for any x6X.

1.3.6. THEOREM. In order that an m-mapping F:X - Kv(Y) have a continuous section it
is necessary and sufficient that the sequence {L%(F}} stabilize at some transfinite step o,
and L*°(F)(x) # ¢ for any Xx6.X.

If we consider m-mappings with noncenvex ranges, then the problem of the existence of a
continuous section becomes much more difficult. It is possible to give an example of a con-
tinuous m-mapping with a contractible range not having a continuous section.

1.3.7. FExample. Suppose the m-mapping F:[—1, 1]-K(R? is defined by the rule

(Tri . i x40,
Fig—{ =]
1{(0,y)l——1<y<1}, i x=0,

whers P[1 x] is the graph of the function y==sh1£; on the interval [%—x,x}. This mapping has
g .

an e-section for any £ > 0 but it does not have a continuous section.
We shall construct an obstruction to the e-section property of one class of m-mappings.

Let X be a compact metric space, and let Y be a metric space.

1.3.8. LEMMA. Let F:X » P(Y) be a lower semicontinuous m-mapping with nonempty com-
pact images. Then for any numbers € > 0, § > O there is a positive number o = ale, 8) such
that in a p-neighborhood of any set T of diameter less than o there is a point x, such that
F(x)F.(x)=U,(F(x)) for any xe€T.

We call a point x,6X satisfying the conditions of Lemma 1.3.8 a companion of the set T.

Let X be a finite polyhedron of dimension n, let Y be a compact metrix space, and let
F:X » K{(Y) be an m-mapping with nonempty compact images,

1.3.9. Definition. We call ar m-mapping F:X > K(Y) a steplike e-approximation of the
m-mapping F if there exists a triangulation ¥ of the polyhedron X such that the following
conditions are satisfied.

a) F(x)cF°(x) for any x€X;

b) on any simplex of of the triangulation # the m-mapping F is constant, i.e., F(x) = A4
for any x€oh

¢) if oicdo’, then F(x)cF (y) for x€o!, yeol.

1.3.10. THEOREM. Let F:X » K{Y) be a lower semicontinuous m-mapping with nonempty
compact images. Then for any £ > 0 the m-mapping F has a steplike e-approximation F.

Proof, We consider sequences of numbers {g}*fl, {;}}_, and a number d, satisfying the
following relations:
O<81<82< PR <sn<8n¢1<83
1
-0 o ' !z 2.
0B < 1 8 4B, 1+ 2y << (g €4 8.,
where 1 = 1, 2,...,n. We remark thal such sequences can always be constructed for any number
€ > 0 in the following mannsr: the sequence {e}’7] is prescribed arbitrarily, while the con-
struction of {§}., and d, ig realizec by beginning with §, and proceeding upward along the
inequalities.

We triangulate the polyhedron s¢ finely that the diameter of each simplex is less than
min{dy; o{en+1i—en; Bn}). This trianguiation is the desired triangulation X . We construct the
m-mapping ¥ successively, beginning with simplices of dimension n.

Let ¢of be an n-dimensiocnal simplex of the triangulation #; then dﬂnﬂs”<im(ew4'“8nvﬁwk
and hence in a Bp-neighborhood of <™ there is a companion of this symplex — 2 point x* — such

3 —F N . 3 s . {5 €5,
that F(x*)cF ™ 7 (x} for any xfc’. Then F "{x*)CF ""(¥), and hence the set A=F "(x*)cF ™" (x}.
We now set F(x) = A for any x60". We carry out analogous constructions with all n-dimen-
sional simplices of the triangulaticn X.
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We consider an (n — 1)-dimensional simplex o™, Suppose this simplex is the face of
the n-dimensional simplices ©0f, 0% ..., 0% . Let the points X}, X},..., X; be the companions of

) &
the corresponding n-dimensional simplices. We set 7“4==0”4LJ(U xﬁ); we shall estimate the
diameter of this set: =1

diam 771 2dy+ 2B, < & (85— Ep-1s Bu-1)-

) £, —E,
Hence there exists a point x*éJp,  (T"")~ a companion of this set — such that F (x*)cF " " (x)
for any x6T"', i.e.,

F%”&ﬂcF%@) for any xEot1s
F'"i(x*)CF ™ (x)=A4, forany i=1,2...,k
We set F "' (x*)=A, and we set F(x) = A for any xfo™!. We define F similarly for the remaining
(n — 1)-dimensional simplices.

Suppose the m-mapping F has been constructed on simplices of dimension n, n — 1,...,k +

We now consider a k-dimensional simplex ok, Suppose this simplex is a factor of the
(k + 1)-dimensional simplices oftl, oftl, ..., 6%l and the points X}, x}, ..., X} are the companions

$
of these simplices. We set Tk==GkU<LJ.xﬂ. In this case
i=t

diamT* < 2dy+ 28, + . .+ + 26,1 < 2d5+ 3Pe, 1 < 2 (8ry1 — 24y Br)-

Then there is a point x*@Ug, (T, which is a companion of this set, such that F (x%)cF ' *(x)
for any x€T*%, i.e.,

FR(x*CF™ (x)  for any xgot
F(xnCF(x)=A, forany i=1,2,...,s.
We set F E(x*) = A and F(x) = A for any X€o*. We define F similarly for all the remaining

k-dimensicnal simplices and in the remaining dimensions. The m-mapping constructed F satis-
fies all the conditions of the theorem. The theorem is proved.

Az analogous construction for steplike c-approximations of upper semicontinuous m-mappings
was proved in the work [31] and found further development in the works [11, 23].

We note that any section of an m-mapping F is an e-section of the m-mapping F. Hence, in
grder that F be e-selective, it suffices to prove selectivity of steplike e-approximations
F. We shall now construct an obstruction to the existence of continuous actions of the m-map-
ping F {see also [181).

Suppose some triangulation % is fixed on the polyhedron X. We consider an m-mapping
FiX > P(Y) satisfying the following conditions:

1} on any simplex ol of the triangulation X% the m-mapping F is constant;

2) if o' o™, then F (6))cF (61", and the inclusion mapping induces an isomorphism of
the homotopy groups in dimensions j = 0, 1,...,n — 1;

3) the sets F(x) for any x6X are (n ~ 1)-simple.
Ther the following lemma holds.

i.3.11. LEMMA. If the polyhedron X is linearly connected then for any two sets F (o}
and F (63") there exists an isomorphism iy &, 05(0f)—+m (F(e5y), 0<j<n—1. If the polyhedron
is simply connected, then the isomorphism i,, is canonical, i.e., for any set F(o%) the fol-
lowing diagram is commutative:

s (F ek =2 oy Prefn)
N\, e
s (F(s5%).
We note that in the case njU?(G@)——O for 0<j<n—1 the trivial isomorphism i,, is

canoniecal for any polyhedron X.
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Suppose the polyhedron X and the m-mapping ¥ are such that the homomorphism Lot 74 (F (1))~

is canonical for j =0, 1,...,n — 1. Suppose a continuous section f of the m-mapping
F is defined on the (& — 1) skeleton 9%“ 1 of the polyhedron #. We construct an obstruction
to the continuation of this section to the %-skeleton (),

Let o be an arbitrary 2-dimensional simplex. We consider the composition of mappings

% foa
Si1»90ct - F (0%),

where % is an arbitrary homeomorphism. Then to the simplex o it is possible to assign an
element [fox] of the homotopy group 7 (F (6)). We fix some set.F(G%) and denote it by Y,.
Then by Lemma 1.3.11 there exists a canonial isomorphism i: H,I(F(GO)—>n,1(Y& We assign to
the simplex o% the element i ([fon])61 (Yo).

A mapping of set of %-dimensional simplices of the polyhedron J# into the group mg-,(Y,)
has thus been constructed.

By extending this mapping to %-dimensional chains, we obtain a cochain c¢/6CH{X, m,—1{Ys)).

1.3.12. Definition. The cochain c% is called an %-obstruction to the continuation of
the section f.

The obstruction c% possesses properties analogous to the properties of a classical ob-
struction.

1.3.13. THEOREM. The obstruction c% is a cocycle. If the cocycle c% is homotopic to
zero, then there exists a mapping which is a section of the m-mapping F onto the (2 = 1)-
dimensional skeleton (-1 coincides with f on 5%”—” and can be continued as a section of
F ts #w,

R 1.3.14. COROLLARY. If the polyhedron X is contractible to a point and the m-mapping
F satisfies conditions 1, 2, and 3, then the m-mapping F has a continuous section.

Proof. The section f is constructed inductively over the skeletons of the polyhedron X.

We consider the zero-dimensional skeleton #(. Let o° be an arbitrary zero-dimensional
simplex; then for the image £(0°) it is possible to take an arbitrary point in the set F(c?).

We suppose that the mapping f is a section of F on the skeleton #¢-D, [>1. We consider
the obstruction ci€C! (¥, m-1(Yy). Since HY(X, G) = 0 for any group of coefflc1ents G, it fol-
lows that c’w~0 By Theorem 1.3.13 there then exists a section g:#?W-VY. Continuing this
process, we obtain a section of the m-mapping F.

1.3.15. COROLLARY. If F satisfies conditions 1, 2, 3 and x; (F (6h)=0, j€0, n—1, 160, =,
then a section of the m-mapping F exists on any finite n- dlmen51onal polyhedron X.

The proof of this corollary is analogous to the proof of Corollary 1.3.14.

1.3.16. Definition. A lower semicontinuous m-mapping F:X - K(Y) with compact images
is called homotopically continuous is for any point x,6X the following conditions are satis-
fied:

a) there exists €, > 0 such that for any e, 0<Ce<Ceo, the set F®(x,) is (n — 1)-simple and
the inclusion mapping F(x¢) < F.(%)induces an isomorphism of the homotopy groups in
dimensions 0, 1,...,n — 13

b) for any‘8;0€:as§ég there exists § = §(e, x,) such that if p(x, x,) < 8 the inclusion
mapping F(%) < F°(x) induces an isomorphism of the homotopy groups in dimensions 0,
~1,...,n — 1.

We note that if mj(F(x,)) =0, j =0, 1,...,n — 1, then condition a) implies condition
b).

1.3.17. LEMMA. Let F:X » K(Y) be_a homotopically continuous m-mapping; then the m-
mapping has a steplike e-approximation F, 0 < € < g, satisfying conditions 1, 2, 3.

Proof. We construct a steplike e-approximation using the construction of Theorem 1.3.10.
That conditions 1 and 3 are satisfied follows from the definition of homotopic continuity and
the construction of a steplike e-approximation. We shall prove that condition 2 is satisfied.
Let 0 < € < €43 we consider a positive number e' < g;. We set Vi(x)={x'|x'€X, o(x, x) <8
x)}, where §(e', x) is determined from condition b) of homotopic continuity; then the family
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{Vr(x)}xgx forms an open covering of space X. Let r be the Lebesgue number of this covering.
Oc g, and ¢, we impose the following additional condition: 4B8; + 2d, < r. We shall now show
that if the numbers {e;}it], {§;}7_,, do satisfy this additional condition, then F satisfies condi-
tion 2. '

Let o' 0oty then 17(x) F®i (x)c:F*v“(x.+ﬂ——f7wa0 where xj, Xj4,; are arbitrary points
of the simplices ol, oit?, respectlvely, xl, x1+1 are the companions of the corresponding sets.
We estimate the distance between xl and x{+1

0 (X% T +diam TV < 2d +48, < .
Hence, there exists a point x, such that F(xdc:Fngi)and.F(x@c:Fy(x?Hy

p (X} X7 ) <

We now consider the following diagram:

Fray=Foial) e £l ) = F(-T‘.H)

is iy

Fizl FElafin)
Flxy)

where all the mappings are generated by the corresponding imbeddings. Since the mappings
ij, 3 = 2, 3, 4, 5 induce isomorphisms of the homotopy groups in the corresponding dimensions,
it follows that i, induces an isomorphism in these same dimensions. The lemma is proved.

The next assertions follow from Lemma 1.3.17 and Corollaries 1.3.14 and 1.1.15.

1.3.18. THEOREM. If an n-dimensional polyhedron X is contractible to a point and the
m-mapping F:X = K(Y) is homotopically continuous, then ¥ is e-selectable.

1.3.19. THEOREM. If the m-mapping F:X + K(Y) is homotopically continuous and m5(F(x)) =
G, 7€0, 0, n—1, for any point x6X, then F is e-selectable on any finite n-dimensional polyhedron

It is easy to see that semicontinuous and closed m-mappings do not admit, generally
speaking, continuous sections. Single-valued approximations open the way to the study of
their properties.

Let (X, pg), (Y, py) be metric spaces. We define a metric p in the product of the spaces
X x Y by the equality

o((x 9), (', y'))=max{ox(x, ¥'); ox (4, ¥')}.
1.3.20. Definition. Let F:X » C(Y) be some m-mapping. A multivalued mapping Fg¢:X -
C(Y), where € > 0, is called a mult1valued €- approx1mat10n of the m-mapping ¥ if

p*(PX (Fa) I‘X (F) "‘;Esup p(z, Tx (F))<8

i.e., the graph Tx(F¢) belongé to an e-neighborhood of the graph I'y(F).

If ¥ is a single-valued continuous mapping, then it is said that it is a single-valued
e-approximation of the m-mapping F. The question of the existence of single-valued e-approx-
imations is important for applications. This can be illustrated by the following example.

Let (X, px) be a compact metric space, let (Y, py) be a metric space, and let F:X - C(Y)
be 2 closed m-mapping; let y, be an arbitrary point of Y.

3.21. THEOREM. If for any € > 0 there exists a single-valued e-approximation foi:X >
Y of the m-mapping F such that the equation f.(x) = y has a solution, then there ex1sts a
point x€X, which is a solution of the operator inclusion y,6F(x).

The next assertion [70] is one of the basic results on the existence of single-valued
e~approximations.

1.3.22. THEOREM. Let X be a metric space, and let Y be a metric les. Then any upper
semicontinuous m-mapping F:X » Cv(Y) for any € > 0 possesses an &- approximation f.:X + Y such
that

fo(X) =co F(X).
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