
q~ ( x ) =  max / (x, v) 

is continuous, and the m-mapping F:X e K(Y) 

F(x) = {v l .y~(x) ,  t(x, y) =~(x)}  
is upper semicontinuouso 

3. Continuous Sections and SinKle-Valued Approximations of m-MaD i ~  

Let X, Y be topological spaces, and let f:X + Y be an m-mapping~ 

1.3oi. Definition. A continuous, single-valued mapping f:X § Y is called a continuous 
section of an m-mapping F if 

t(x)~e(x) 
for all xEX. 

The existence of continuous sections is closely connected with lower semicontinuity of 
a multivalued mapping~ The following assertion characterizes this fact. 

1.3.2. THEOREM. Let F:X + P(Y) be an m-mapping. If for any points x6X and y6f(x) 
there exists a continuous section f:X + Y of the m-mapping F such that f(x) = y, then F is 
a lower semicontinuous m-mapping. 

Michael's theorem is one of the basic results of the theory of continuous sections which 
has found many applications. 

1.3.3. THEOREM. The following properties of a T1-space X are equivalent: 

a) X is paracompact; 

b) if Y is a Banach space, then each lower semicontinuous m-mapping F:X + Cv(Y) has a 
continuous section~ 

The proof of Theorem 1.3.3 is based on the following assertion. 

1.3o4. LE~iMA. Let X be a paracompact space, and let Y be a normal space; let F:X 
Cv(Y) be a lower semicontinuous m-mapping; then for any s > 0 there exists a continuous 
single-valued mapping fs:X + Y such that f~(x)~U~(f(x)) for any x~X. 

This mapping fE is naturally called an s-section of the m-mapping F. 

There are many examples which show that the conditions of completeness of the space Y, 
closedness and convexity of the range of the m-mapping F, and the condition of lower semi- 
continuity of this mapping are essential for fihe existence of a continuous section. However, 
it is obvious that there exist m-mappings which are ~ot lower semicon~inuous but have a con- 
tinuous section. We shall consider the problem of the existence of a continuous section in 
terms of the local structure of m-mappings (see [22])~ 

Let X be a metric space, Y be a convex compact subset of the Banach space E~ and let 
F:X -> Kv(Y) be some m-mapping. We set F~(x) =U~(F(x))NY. For each point xo~X we define the 
set L(F)(x0) by the rule 

' ~>ot~>o,xCu~xo~ 

!.3.5. THEOREM. In order that an m-mapping F:X--~ Kv(Y) have an s-section for any 
s > 0 it is necessary and sufficient that L(F)(x0) x ~ for any ~06X. 

We remark that nonemptiness of the set L(G)(x) for any x6X does not yet guarantee the 
presence of a continuous section of an m-mapping F~ 

We consider iterations of L: 

LO(F)=F, L~(F)=L(L~-'{F)), ~ j . I .  

We continue this process for each transfinite nu~nber of first type, while for a transfinite 
nt,,mber of second type we set 

~ i  ~' ~'/ L ~ (F) (x)--- ~~ L ~ (~) (x). 
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We shall say that the sequence (L~(F)} stabilizes an seep a~. if 

D ~ (F) (x )=L  ~~ (F) (x) 
for any x~X. 

1.3.6. THEOREM. In order that an m-mapping F:X + Kv(Y) have a continuous section it 
is necessary and sufficienE that the sequence {L~(F)} stabilize at some transfinite step a0 
and L~~ ~ ~ for any x6/f. 

If we consider m-mappings with nonconvex ranges, then the problem of the existence of a 
continuous section becomes milch more difficult. !t is possible to give an example of a con- 
tinuous m-mapping with a contractible range not having a continuous section~ 

1.3.7~ Exam i~ Suppose the ~-mapping F: [--I, I]-+/~(R =)is defined by the rule 

F (x) = i t~x'x~ 
[{(0, y) { -- 1 ~ y < 1}, if x = 0,  

where rr~x,.1[T J is the graph_ of the function y=sin~- on the interval kZ [~ X,X].] This mapping has 

an T-section for any ~ > 0 but it does not have a continuous section. 

We shall construct an obstruction to the e-section property of one class of m-mappings. 

Let X be a compact metric space, and let Y be a metric space. 

1.3.8. LEMMA. Let F:X + P(Y) be a lower semicontinuous m-mapping with nonempty com- 
pact images. Then for any numbers e > 0, ~ > 0 there is a positive number ~ = ~(e, g) such 
that in a ~-neighborhood of any set T of diameter less than ~ there is a point x 0 such that 
F(xo) cF~(x)=U~(F(x)) for any x6T. 

We call a point Xo~X satisfying the conditions of Lemma 1.3.8 a companion of the set T. 

Let X be a finite polyhedron of dimension n, let Y be a compact metrix space, and let 
F:X + K(Y) be an m-mapping with nonempty compact images. 

1.3.9. Definition~ We call an m-mapping F:X + K(Y) a steplike T-approximation of the 
m-mapping F if there exists a triangulation ~ of the polyhedron X such that the following 
conditions are satisfied. 

a) F(x)cF~(x) for any X~X; 

b) on any simplex o i of the triangulation OF. the m-mapping F is constant, i.e., F(x) = A i 
for any Xs 

c) if oiCOo j, then P(x)cP(y) for xCo i, yeo j. 

1 , 3 . 1 0 ,  THEOREM. Lel- F:X + K(Y) be a lower s e m i c o n t i n u o u s  m-mapping w i t h  nonempty 
compact images. Then for any s > 0 the m=mapping F has a steplike T-approximation F. 

Proof. We consider sequences of m~nbers I~i=i, ~ ~,~+I {~i~,=~ and a number de, satisfying the 
following relations : 

0 < 8 1 <  g2< . . .  <gn < gt~.l<g, 
�9 1 

where i = i, 2,~ We remark that such sequences can always be constructed for any number 
s > 0 in the following mann,s.r: the sequence &D+~ is prescribed arbitrarily, while the con- 
struction of {~}~=I and d o is realize~ by beginning with ,el and proceeding upward along the 
inequalities. 

We triangulate the polyhedron sv finely that the diameter of each simplex is less than 
nlin(d0; =(8%+,,--6n, ~)). This triangulation is the desired triangulation ~. We construcn the 
m=mapping F successively, beginning with simplices of dimension n. 

Let o n be an n-dimensional simplex of the triangulation L~; then diar~o=<~(e~§162 ~=), 
and hence in a ~n-neighborh<~,od of e'~ there is a companion of this sympiex - a point x ~'~ - such 

that F (x*)~F ~n+*-en (x} for any x~o ~'. Then F ~(x*)~F en+~ (.':), and hence the set A =F en (x*)~F ~n+' (x). 
We now set F(x) = A for any x~n wv carry out analogous construdtions with all n-dimen- 
sional simplices of the triang~lation ~ ,  
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We consider an (n - l)-dimensional simplex o n-z. Suppose this simplex is the face of 
the n-dimensiona! simplices G~, a~ ..... a~.'. Let the points x I, x 2 ..... x~ be the companions of 

the corresponding n-dimensional simplices. We set Tn'I=on-IuIu'~. x:);- we shall estimate the 
diameter of this set: I=i 

/ 

diam T ~-~ ~ 2do @ 2 ~  < ~' (e n -  en-I, ~-~). 

Hence there exists a point x*fiJf~n_,(Tn-a) a companion of this set such that F t~ ) ~  ~-I 
. xf, T n-I for any _ , i.e., 

F ~-' ( x * ) c F  ~" (x) fo~ ~ y  x6o~-~; 

F en- '(x*)cFe'~(x~)=Az for  any i = l ,  2 . . . . .  k. 

We set F en-' (x*)=A, and we set F(x) = A for any xCo n-1. We define F similarly for the remaining 
(n - l)-dimensional simplices. 

Suppose the m-mapping F has been constructed on simplices of dimension n, n- i, .... k + 
I. 

We now consider a k-dimensional simplex o k . Suppose this simplex is a factor of the 

. . . .  ~ s * * , . . ~  X ;  (k + l)-dimensional simplices a~ +I, o.~+i, a ~+I and the points x I, x 2, are the companions 

of these simplices. We set Tk-akU U x �9 In this case 
\ t = 1  , '  

diam T ~ < 2d0 + 2~n + . . .  + 2~k+1 < 2d0 + 3~+1 < ~ (ek+l - -  ek, ~).  

Then  t h e r e  i s  a p o i n t  x * E U ~ ( T ~ ) , w h i c h  i s  a c o m p a n i o n  o f  t h i s  s e t ,  s u c h  t h a t  F(x*)~F~k+a-%(x) 
for any x6Tk, i.e., 

F % ( x * ) ~ F  ek+a (X) for any X6O~; 

Fek(x*)cF~k+~(x~)=A t for  any i = i ,  2 . . . . .  s. 

We set FSk(x *) = A and F(x) = A for any xEo ~. We define F similarly for all the remaining 
k-dimensional simplices and in the remaining dimensions. The m-mapping constructed F satis- 
fies all the conditions of the theorem. The theorem is proved. 

Aa analogous construction for steplike g-approximations of upper semicontinuous m-mappings 
was proved in the work [31] and found further development in the works [ii, 23]. 

We note that any section of an m-mapping F is an s-section of the m-mapping F. Hence, in 
order that F be s-selective, it suffices to prove selectivity of steplike s-approximations 
F. We shall now construct an obstruction to the existence of continuous actions of the m-map- 
ping F (see also [18]). 

Suppose some triangulation 5f is fixed on the polyhedron X. We consider an m-mapping 
F:X § P(Y) satisfying the following conditions: 

i) on any simplex o i of the triangulation Yf~ the m-mapping F is constant; 

2} if ~iC0o~+1, then P(ot)cF(oi+1), and the inclusion mapping induces an isomorphism of 
the homotopy groups in dimensions j = 0, 1 ..... n - i; 

3) the sets F(x) for any xfX are (n - l)-simple. 

Then the following lemma holds. 

1.3~iI. LF~MMA. If the polyhedron X is linearly connected, then for any two sets F(~) 

and F(o~') there exists an isomorphismi12:~](/~(a~')-+~i(I:(o~)), O~<j~<n--l. If the polyhedron 

is simply connected, then the isomorphism i~ is canonical, i.e., for any set F(og') the fol- 
lowing diagram is commutative: 

We note that in the case ~i(F~(~*))=O for 0<j-.<t~--1 the trivial isomorphism i~ is 
canonical for any polyhedron X. 
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Suppose the polyhedron X and the m-mapping F are such that the homomorphism in: x2(P (o~I))-+ 

is canonical for j = 0, 1 ..... n - i. Suppose a continuous section f of the m-mapping 
is defined on the (i - l)-skeleton ~f(t-l) of the polyhedron Sf. We construct an obstruction 

to the continuation of this section to the i-skeleton Sf(~). 

Let o i be an arbitrary i-dimensional simplex. We consider the composition of mappings 

Sl-l ~O~ l --,F (o9, 

where • i s  an a r b i t r a r y  homeomorphism. Then t o  t h e  s i m p l e x  o i i t  i s  p o s s i b l e  t o  a s s i g n  an 
e l emen t  [/o~:1 of  t h e  homotopy group ~l_l(/~(al)), We f i x  some s e t  F(a~0) and d e n o t e  i t  by Y0. 
Then by Lemma 1 . 3 . 1 1  t h e r e  e x i s t s  a c a n o n i a l  i somorph i sm i: ~l_l(P(a0)-~nl-1(Y0) �9 We a s s i g n  t o  
the simplex a i the element i([/o~:])s ). 

A mapping of set of i-dimensional simplices of the polyhedron ~ into the group ~i_1(Y0) 
has thus been constructed. 

By extending this mapping to i-dimensional chains, we obtain a cochain c/6C~(J{, ~Z-l(Y0)). 
i . 

1.3.12. Definition. The cochain cf is called an i-obstructio~ to the continuation of 
the section f. 

The obstruction c~ possesses properties analogous to the properties of a classical ob- 
struction. 

i . i 
1.3.13. THEOREM. The obstruction cf is a cocycle. If the cocycle cf Is homotopic to 

zero, then there exists a mapping which is a section of the m-mapping F onto the (i - l)- 
dimpnsional skeleton jr(l-1) coincides with f on Sf(t-2), and can be continued as a section of 
F t6~f(I). 

1.3.14. COROLLARY. If the polyhedron X is contractible to a point and the m-mapping 
satisfies conditions i, 2, and 3, then the m-mapping F has a continuous section. 

Proof. The section f is constructed inductively over the skeletons of the polyhedron X. 

We consider the zero-dimensional skeleton Sf(0). Let o ~ be an arbitrary zero-dimensional 
simplex; then for the image f(o ~ it is possible to take an arbitrary point in the set 9(o~ 

We suppose that the mapping f is a section of F on the skeleton ~f(t-1)l> I. We consider 
the obstruction c~ECl(~f, ~t-1(Y0)). Since Hi(X, G) = 0 for any group of coefficients G, it fol- 
lows that c~N0. By Theorem 1.3.13 there then exists a section g:~f(z)-+Y. Continuing this 
process, we obtain a section of the m-mapping F. 

1.3.15. COROLLARY. If F satisfies conditions i, 2, 3 and ~7(F(o0)=0, j~O, ~--I, [~0, ~, 
then a section of the m-mapping Y exists on any finite n-dimensional polyhedron X. 

The proof of this corollary is analogous to the proof of Corollary 1.3.14o 

1.3.16. Definition. A lower semicontinuous m-mapping F:X + K(Y) with compact images 
is called homotopically continuous is for any point xo6X the following conditions are satis- 
fied: 

a) there exists eo > 0 such that for any ~, 0~0, the set Fe(x0) is (n - l)-simple and 
the inclusion mappinglF(x0) ~ F~(x0) induces an isomorphism of the homotopy groups in 
dimensions 0, 1 ..... n - i; 

b) for any ~, 0<~<~_~ there exists 6 = 6(e, x 0) such that if p(x, x 0) < 6 the inclusion 
mapping F(x0) ~ F~(x) induces an isomorphism of the homotopy groups in dimensions 0, 

--i ..... n - i. 

We note that if ~j(F(x0)) = 0, j = 0, 1 ..... n - i, then condition a) implies condition 

b). 

1.3.17. LEMMA. Let F:X + K(Y) be a homotopically continuous m-mapping; then the m- 
mapping has a steplike e-approximation F, 0 < e < e 0 satisfying conditions i, 2, 3~ 

Proof. We construct a steplike e-approximation using the construction of Theorem Io3.i0o 
That conditions 1 and 3 are satisfied follows from the definition of homotopic continuity and 
the construction of a steplike e-approximation. We shall prove that condition 2 is satisfied~ 
Let 0 < e < e0; we consider a positive number e' < e~. We set V~(x)~{x'ix'6X, 9(x, x')<6(~ 
x)}, where 6(e', x) is determined from condition b) of homotopic continuity; then the family 
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(V'~,(X)}xfiX forms an open covering of space X. Let r be the Lebesgue number of this covering. 

O~ ~l and d o we impose the following additional condition: 45z + 2d 0 < r. We shall now show 
that if the numbers te ~+i {~i}i~_~, do satisfy this additional condition, then F satisfies condi- 
tlon 2o 

Let cs'~Ooi+1; then .P(xi)=F q (x~)~F ei+~ (x~+1)=F(xi+~), where xi, xi+ I are arbitrary points 
of the simplices o i, o i+I, respectively; x~, x~+ i are the companions of the corresponding sets. 
We estimate the distance between x i and x~+l: 

P ( i' x~+l) "-< 9 (xi,  T ~) q- diam T t -.< 2d0 q- 413~ <( r~ 
e~ , , H e n c e ,  t h e r e  e x i s t s  a p o i n t  x 0 s u c h  t h a t  F(xo)cF (xi) and P(xo)cF 8'(x~+1). 

We now c o n s i d e r  t h e  f o l l o w i n g  d i a g r a m :  

F(x/)=F (=i) F (x/.+O=F(x;_+O 

'~'~"-F(=o~ "~'~, 
where all the mappings are generated by the corresponding imbeddings. Since the mappings 
ij, j = 2, 3, 4, 5 induce isomorphisms of the homotopy groups in the corresponding dimensions, 
it follows that i I induces an isomorphism in these same dimensions. The lemma is proved. 

The next assertions follow from Lemma 1.3.17 and Corollaries 1.3.14 and 1.1.15. 

1.3.18. THEOREM. If an n-dimensional polyhedron X is contractible to a point and the 
m-mapping F:X + K(Y) is homotopically continuous, then F is g-selectable. 

1.3.19. THEOREM. If the m-mapping F:X + K(Y) is homotopically continuous and vj(F(x)) = 

O, jCO, tz--1, for any point xO.X, then F is g-selectable on any finite n-dimensional polyhedron. 

It is easy to see that semicontinuous and closed m-mappings do not admit, generally 
speaking, continuous sections. Single-valued approximations open the way to the study of 
their properties. 

Let (X, PX), (Y, PY) be metric spaces. We define a metric p in the product of the spaces 
X • Y by the equality 

9(( x, Y), ( xr, Yr))=max{gx( x, x'); PY(9, Y')}. 

1.3.20. Definition. Let F:X + C(Y) be some m-mapping. A multivalued mapping Fg:X 
C(Y), where ~ > 0, is called a multivalued s-approximation of the m-mapping F if 

9.  (Px (F~), Px (F)) = sup 9 (z ,  r x  (F)) < ~, 
zErX (Pe) 

i.e., the graph FX(Fg) belongs to an gTneighborhood of the graph Fx(F). 

If F e is a single-valued continuous mapping, then it is said that it is a single-valued 
g-approximation of the m-mapping F. The question of the existence of single-valued g-approx- 
imations is important for applications. This can be illustrated by the following example. 

Let (X, PX) be a compact metric space, let (Y, py) be a metric space, and let F:X + C(Y) 
be a closed m-mapping; let Y0 be an arbitrary point of Y. 

1.3~21. THEOREM. If for any g > 0 there exists a single-valued g-approximation fg:X § 
Y of the m-mapping F such that the equation fg(x) = y has a solution, then there exists a 
point xo6X, which is a solution of the operator inclusion yo6F(x). 

The next assertion [70] is one of the basic results on the existence of single-valued 
E- approximations. 

1.3.22. THEOREM. Let X be a metric space, and let Y be a metric Ics. Then any upper 
semicontinuous m-mapping F:X + Cv(Y) for any g > 0 possesses an g-approximation fg:X + Y such 
that 

f, (X) ~ c o  F (X). 
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