$$\Phi(x) = \max_{\tilde{y} \in \Phi(x)} f(x, \tilde{y})$$

is continuous, and the m-mapping $F:X \rightarrow K(Y)$

$$F(x) = \{y \mid y \in \Phi(x), f(x, y) = \varphi(x)\}$$

is upper semicontinuous.

3. Continuous Sections and Single-Valued Approximations of m-Mappings

Let X, Y be topological spaces, and let $f: X \rightarrow Y$ be an m-mapping.

<u>1.3.1.</u> Definition. A continuous, single-valued mapping $f: X \rightarrow Y$ is called a continuous section of an m-mapping F if

 $f(x) \in F(x)$

for all $x \in X$.

The existence of continuous sections is closely connected with lower semicontinuity of a multivalued mapping. The following assertion characterizes this fact.

<u>1.3.2.</u> THEOREM. Let $F:X \rightarrow P(Y)$ be an m-mapping. If for any points $x \in X$ and $y \in F(x)$ there exists a continuous section $f:X \rightarrow Y$ of the m-mapping F such that f(x) = y, then F is a lower semicontinuous m-mapping.

Michael's theorem is one of the basic results of the theory of continuous sections which has found many applications.

1.3.3. THEOREM. The following properties of a T_1 -space X are equivalent:

a) X is paracompact;

b) if Y is a Banach space, then each lower semicontinuous m-mapping $F:X \rightarrow Cv(Y)$ has a continuous section.

The proof of Theorem 1.3.3 is based on the following assertion.

<u>1.3.4.</u> LEMMA. Let X be a paracompact space, and let Y be a normal space; let $F:X \rightarrow Cv(Y)$ be a lower semicontinuous m-mapping; then for any $\varepsilon > 0$ there exists a continuous single-valued mapping $f_{\varepsilon}: X \rightarrow Y$ such that $f_{\varepsilon}(x) \in U_{\varepsilon}(F(x))$ for any $x \in X$.

This mapping f_ϵ is naturally called an $\epsilon\text{-section}$ of the m-mapping F.

There are many examples which show that the conditions of completeness of the space Y, closedness and convexity of the range of the m-mapping F, and the condition of lower semicontinuity of this mapping are essential for the existence of a continuous section. However, it is obvious that there exist m-mappings which are not lower semicontinuous but have a continuous section. We shall consider the problem of the existence of a continuous section in terms of the local structure of m-mappings (see [22]).

Let X be a metric space, Y be a convex compact subset of the Banach space E, and let $F: X \to Kv(Y)$ be some m-mapping. We set $F^*(x) = U_*(F(x)) \cap Y$. For each point $x_0 \in X$ we define the set $L(F)(x_0)$ by the rule

$$L(F)(x_0) = \bigcap_{\varepsilon>0} \left(\bigcup_{\delta>0} \left(\bigcap_{x \in U_{\delta}(x_0)} F^{\varepsilon}(x) \right) \right).$$

<u>1.3.5.</u> THEOREM. In order that an m-mapping $F:X \to Kv(Y)$ have an ε -section for any $\varepsilon > 0$ it is necessary and sufficient that $L(F)(x_0) \neq \emptyset$ for any $x_0 \in X$.

We remark that nonemptiness of the set L(G)(x) for any $x \in X$ does not yet guarantee the presence of a continuous section of an m-mapping F.

We consider iterations of L:

$$L^{0}(F) = F, L^{n}(F) = L(L^{n-1}(F)), n \ge 1.$$

We continue this process for each transfinite number of first type, while for a transfinite number of second type we set

$$L^{\alpha}(F)(x) = \bigcap_{\beta < \alpha} L^{\beta}(F)(x).$$

We shall say that the sequence $\{L^{\alpha}(F)\}$ stabilizes at step α_{0} if

$$L^{\alpha_{0}}(F)(x) = L^{\alpha_{0}+1}(F)(x)$$

for any $x \in X$.

<u>1.3.6.</u> THEOREM. In order that an m-mapping $F:X \to Kv(Y)$ have a continuous section it is necessary and sufficient that the sequence $\{L^{\alpha}(F)\}$ stabilize at some transfinite step α_0 and $L^{\alpha_0}(F)(x) \neq \emptyset$ for any $x \in X$.

If we consider m-mappings with nonconvex ranges, then the problem of the existence of a continuous section becomes much more difficult. It is possible to give an example of a continuous m-mapping with a contractible range not having a continuous section.

1.3.7. Example. Suppose the m-mapping $F: [-1, 1] \rightarrow K(\mathbb{R}^2)$ is defined by the rule

$$F(x) = \begin{cases} \Gamma[\frac{1}{2}x,x], & \text{if } x \neq 0, \\ \{(0, y) \mid -1 \leqslant y \leqslant 1\}, & \text{if } x = 0, \end{cases}$$

where $\Gamma_{\left[\frac{1}{2}x,x\right]}$ is the graph of the function $y = \sin \frac{1}{x}$ on the interval $\left[\frac{1}{2}x,x\right]$. This mapping has an ε -section for any $\varepsilon > 0$ but it does not have a continuous section.

We shall construct an obstruction to the ε -section property of one class of m-mappings.

Let X be a compact metric space, and let Y be a metric space.

<u>1.3.8.</u> LEMMA. Let $F:X \to P(Y)$ be a lower semicontinuous m-mapping with nonempty compact images. Then for any numbers $\varepsilon > 0$, $\beta > 0$ there is a positive number $\alpha = \alpha(\varepsilon, \beta)$ such that in a β -neighborhood of any set T of diameter less than α there is a point x_0 such that $F(x_0) \subset F_{\varepsilon}(x) = U_{\varepsilon}(F(x))$ for any $x \in T$.

We call a point $x_0 \in X$ satisfying the conditions of Lemma 1.3.8 a companion of the set T.

Let X be a finite polyhedron of dimension n, let Y be a compact metrix space, and let $F:X \rightarrow K(Y)$ be an m-mapping with nonempty compact images.

<u>1.3.9.</u> Definition. We call an m-mapping $\hat{F}:\hat{X} \to K(Y)$ a steplike ε -approximation of the m-mapping F if there exists a triangulation \mathcal{H} of the polyhedron X such that the following conditions are satisfied.

- a) $\hat{F}(x) \subset F^{\varepsilon}(x)$ for any $x \in X$;
- b) on any simplex σ^{i} of the triangulation \mathcal{K} the m-mapping \hat{F} is constant, i.e., $\hat{F}(x) = A_{i}$ for any $x \in \sigma^{i}$;
- c) if $\sigma^i \subset \partial \sigma^j$, then $\hat{F}(x) \subset \hat{F}(y)$ for $x \in \sigma^i$, $y \in \sigma^j$.

<u>1.3.10.</u> THEOREM. Let $F: X \to K(Y)$ be a lower semicontinuous m-mapping with nonempty compact images. Then for any $\varepsilon > 0$ the m-mapping F has a steplike ε -approximation \hat{F} .

<u>Proof.</u> We consider sequences of numbers $\{\varepsilon_i\}_{i=1}^{n+1}$, $\{\beta_i\}_{i=1}^n$ and a number d_c satisfying the following relations:

$$0 < \varepsilon_1 < \varepsilon_2 < \ldots < \varepsilon_n < \varepsilon_{n+1} < \varepsilon,$$

$$0 < \beta_{i+1} < \frac{1}{4} \beta_i, \quad 4\beta_{i+1} + 2d_0 < \alpha (\varepsilon_{i+1} - \varepsilon_i; \beta_i),$$

where i = 1, 2,...,n. We remark that such sequences can always be constructed for any number $\varepsilon > 0$ in the following manner: the sequence $\{e_i\}_{i=1}^{n+1}$ is prescribed arbitrarily, while the construction of $\{\beta_i\}_{i=1}^n$ and d_0 is realized by beginning with β_1 and proceeding upward along the inequalities.

We triangulate the polyhedron so finely that the diameter of each simplex is less than $\min(d_0; \alpha(e_{n+1}-e_n; \beta_n))$. This triangulation is the desired triangulation \mathcal{K} . We construct the m-mapping \hat{F} successively, beginning with simplices of dimension n.

Let σ^n be an n-dimensional simplex of the triangulation \mathscr{X} ; then $\dim \sigma^n < \alpha(\varepsilon_{p+1} - \varepsilon_n, \beta_n)$, and hence in a β_n -neighborhood of σ^n there is a companion of this symplex - a point x^* - such that $F(x^*) \subset F^{\varepsilon_{n+1}-\varepsilon_n}(x)$ for any $x \in \sigma^{\varepsilon_n}$. Then $F^{\varepsilon_n}(x^*) \subset F^{\varepsilon_{n+1}}(x)$, and hence the set $A = F^{\varepsilon_n}(x^*) \subset F^{\varepsilon_{n+1}}(x)$. We now set $\widehat{F}(x) = A$ for any $x \in \sigma^n$. We carry out analogous constructions with all n-dimensional simplices of the triangulation \mathscr{K} . We consider an (n-1)-dimensional simplex σ^{n-1} . Suppose this simplex is the face of the n-dimensional simplices $\sigma_1^n, \sigma_2^n, \ldots, \sigma_k^n$. Let the points $x_1^*, x_2^*, \ldots, x_k^*$ be the companions of the corresponding n-dimensional simplices. We set $T^{n-1} = \sigma^{n-1} \bigcup \begin{pmatrix} k \\ \bigcup \\ i=1 \end{pmatrix}$; we shall estimate the diameter of this set:

diam
$$T^{n-1} \leq 2d_0 + 2\beta_n < \alpha (\varepsilon_n - \varepsilon_{n-1}, \beta_{n-1}).$$

Hence there exists a point $x^* \in \mathcal{O}_{\beta_{n-1}}(T^{n-1})$ - a companion of this set - such that $F(x^*) \subset F^{\epsilon_n - \epsilon_{n-1}}(x)$ for any $x \in T^{n-1}$, i.e.,

$$F^{e_{n-1}}(x^*) \subset F^{e_n}(x)$$
 for any $x \in \sigma^{n-1};$
 $F^{e_{n-1}}(x^*) \subset F^{e_n}(x^*_i) = A_i$ for any $i = 1, 2, ..., k$

We set $F^{e_{n-1}}(x^*) = A$, and we set $\hat{F}(x) = A$ for any $x \in \sigma^{n-1}$. We define \hat{F} similarly for the remaining (n-1)-dimensional simplices.

Suppose the m-mapping \tilde{F} has been constructed on simplices of dimension n, n - 1,...,k + 1.

We now consider a k-dimensional simplex σ^k . Suppose this simplex is a factor of the (k + 1)-dimensional simplices $\sigma_1^{k+1}, \sigma_2^{k+1}, \ldots, \sigma_s^{k+1}$ and the points $x_1^*, x_2^*, \ldots, x_s^*$ are the companions of these simplices. We set $T^k = \sigma^k \cup (\bigcup_{i=1}^s x_i^*)$. In this case

$$\operatorname{diam} T^{k} \leq 2d_{0} + 2\beta_{n} + \ldots + 2\beta_{k+1} \leq 2d_{0} + 3\beta_{k+1} < \alpha (\varepsilon_{k+1} - \varepsilon_{k}, \beta_{k}).$$

Then there is a point $x^* \in U_{\beta_k}(T^k)$, which is a companion of this set, such that $F(x^*) \subset F^{e_{k+1}-e_k}(x)$ for any $x \in T^k$, i.e.,

$$F^{\varepsilon_k}(x^*) \subset F^{\varepsilon_{k+1}}(x) \quad \text{for any} \quad x \in \sigma^k;$$

$$F^{\varepsilon_k}(x^*) \subset F^{\varepsilon_{k+1}}(x^*_i) = A_i \quad \text{for any} \quad i = 1, 2, \dots, s.$$

We set $F^{\epsilon_k}(x^*) = A$ and $\hat{F}(x) = A$ for any $x \in \sigma^k$. We define \hat{F} similarly for all the remaining k-dimensional simplices and in the remaining dimensions. The m-mapping constructed \hat{F} satisfies all the conditions of the theorem. The theorem is proved.

An analogous construction for steplike ε -approximations of upper semicontinuous m-mappings was proved in the work [31] and found further development in the works [11, 23].

We note that any section of an m-mapping \hat{F} is an ε -section of the m-mapping F. Hence, in order that F be ε -selective, it suffices to prove selectivity of steplike ε -approximations \hat{F} . We shall now construct an obstruction to the existence of continuous actions of the m-mapping \hat{F} (see also [18]).

Suppose some triangulation \mathcal{K} is fixed on the polyhedron X. We consider an m-mapping $\hat{F}:X \to P(Y)$ satisfying the following conditions:

- 1) on any simplex σ^i of the triangulation $\mathcal R$ the m-mapping \hat{F} is constant;
- 2) if $\sigma^i \subset \partial \sigma^{i+1}$, then $\hat{F}(\sigma^i) \subset \hat{F}(\sigma^{i+1})$, and the inclusion mapping induces an isomorphism of the homotopy groups in dimensions $j = 0, 1, \ldots, n-1$;
- 3) the sets $\hat{F}(x)$ for any $x \in X$ are (n 1)-simple.

Then the following lemma holds.

<u>1.3.11.</u> LEMMA. If the polyhedron X is linearly connected, then for any two sets $\hat{F}(\sigma_1^{k_1})$ and $\hat{F}(\sigma_2^{k_2})$ there exists an isomorphism i_{12} : $\pi_j(\hat{F}(\sigma_1^{k_2}) \to \pi_j(\hat{F}(\sigma_2^{k_2})), 0 \le j \le n-1$. If the polyhedron is simply connected, then the isomorphism i_{12} is canonical, i.e., for any set $\hat{F}(\sigma_3^{k_2})$ the following diagram is commutative:

We note that in the case $\pi_j(\hat{F}(\sigma^k)) = 0$ for $0 \le j \le n-1$ the trivial isomorphism i_{12} is canonical for any polyhedron X.

Suppose the polyhedron X and the m-mapping \hat{F} are such that the homomorphism i_{12} : $\pi_{\gamma}(\hat{F}(\sigma_1^{k_1})) \rightarrow i_{12}$

is canonical for j = 0, 1, ..., n - 1. Suppose a continuous section f of the m-mapping \hat{F} is defined on the (l - 1)-skeleton $\mathcal{K}^{(l-1)}$ of the polyhedron \mathcal{K} . We construct an obstruction to the continuation of this section to the *l*-skeleton $\mathcal{K}^{(l)}$.

Let σ^{ℓ} be an arbitrary ℓ -dimensional simplex. We consider the composition of mappings

 $S^{l-1} \xrightarrow{\mathfrak{n}} \partial \sigma^l \xrightarrow{f} \hat{F}(\sigma^l),$

where \varkappa is an arbitrary homeomorphism. Then to the simplex σ^{ℓ} it is possible to assign an element $[f \circ \varkappa]$ of the homotopy group $\pi_{l-1}(\hat{F}(\sigma^{l}))$. We fix some set $\hat{F}(\sigma^{s_{0}})$ and denote it by Υ_{0} . Then by Lemma 1.3.11 there exists a canonial isomorphism $i: \pi_{l-1}(\hat{F}(\sigma^{l})) \to \pi_{l-1}(Y_{0})$. We assign to the simplex σ^{ℓ} the element $i([f \circ \varkappa]) \in \pi_{l-1}(Y_{0})$.

A mapping of set of l-dimensional simplices of the polyhedron \mathscr{K} into the group $\pi_{l-1}(Y_0)$ has thus been constructed.

By extending this mapping to ℓ -dimensional chains, we obtain a cochain $c_t \in C^{\hat{\ell}}(\mathcal{K}, \pi_{l-1}(Y_0))$.

1.3.12. Definition. The cochain c_f^{ℓ} is called an ℓ -obstruction to the continuation of the section f.

The obstruction $c_{f}^{\&}$ possesses properties analogous to the properties of a classical obstruction.

<u>1.3.13.</u> THEOREM. The obstruction c_{f}^{ℓ} is a cocycle. If the cocycle c_{f}^{ℓ} is homotopic to zero, then there exists a mapping which is a section of the m-mapping \hat{F} onto the $(\ell - 1)$ -dimensional skeleton $\mathscr{K}^{(l-1)}$ coincides with f on $\mathscr{K}^{(l-2)}$, and can be continued as a section of \hat{F} to $\mathscr{K}^{(l)}$.

<u>1.3.14.</u> COROLLARY. If the polyhedron X is contractible to a point and the m-mapping \hat{F} satisfies conditions 1, 2, and 3, then the m-mapping \hat{F} has a continuous section.

Proof. The section f is constructed inductively over the skeletons of the polyhedron X.

We consider the zero-dimensional skeleton $\mathscr{K}^{(0)}$. Let σ^0 be an arbitrary zero-dimensional simplex; then for the image $f(\sigma^0)$ it is possible to take an arbitrary point in the set $\hat{F}(\sigma^0)$.

We suppose that the mapping f is a section of \hat{F} on the skeleton $\mathscr{K}^{(l-1)}$, l > 1. We consider the obstruction $c_f^l \in C^l(\mathscr{K}, \pi_{l-1}(Y_0))$. Since $\mathbb{H}^{\ell}(X, G) = 0$ for any group of coefficients G, it follows that $c_f^l \sim 0$. By Theorem 1.3.13 there then exists a section $g: \mathscr{K}^{(l)} \to Y$. Continuing this process, we obtain a section of the m-mapping \hat{F} .

<u>1.3.15.</u> COROLLARY. If \hat{F} satisfies conditions 1, 2, 3 and $\pi_j(\hat{F}(\sigma^l)) = 0$, $j\in\overline{0, n-1}$, $l\in\overline{0, n}$, then a section of the m-mapping \hat{F} exists on any finite n-dimensional polyhedron X.

The proof of this corollary is analogous to the proof of Corollary 1.3.14.

<u>1.3.16.</u> Definition. A lower semicontinuous m-mapping $F:X \rightarrow K(Y)$ with compact images is called homotopically continuous is for any point $x_0 \in X$ the following conditions are satisfied:

- a) there exists $\varepsilon_0 > 0$ such that for any ε , $0 \le \varepsilon \le \varepsilon_0$, the set $F^{\varepsilon}(x_0)$ is (n 1)-simple and the inclusion mapping $F(x_0) \leftarrow F_{\varepsilon}(x_0)$ induces an isomorphism of the homotopy groups in dimensions 0, 1,..., n 1;
- b) for any ε , $0 < \varepsilon \leq \varepsilon_0$ there exists $\delta = \delta(\varepsilon, x_0)$ such that if $\rho(x, x_0) < \delta$ the inclusion mapping $F(x_0) \leftarrow F^{\varepsilon}(x)$ induces an isomorphism of the homotopy groups in dimensions 0, $-1, \ldots, n 1$.

We note that if $\pi_j(F(x_0)) = 0$, j = 0, 1, ..., n - 1, then condition a) implies condition b).

<u>1.3.17.</u> LEMMA. Let $F:X \to K(Y)$ be a homotopically continuous m-mapping; then the m-mapping has a steplike ε -approximation \hat{F} , $0 < \varepsilon < \varepsilon_0$ satisfying conditions 1, 2, 3.

<u>Proof.</u> We construct a steplike ε -approximation using the construction of Theorem 1.3.10. That conditions 1 and 3 are satisfied follows from the definition of homotopic continuity and the construction of a steplike ε -approximation. We shall prove that condition 2 is satisfied. Let $0 < \varepsilon < \varepsilon_0$; we consider a positive number $\varepsilon' < \varepsilon_1$. We set $V_{\Delta}(x) = \{x' \mid x' \in X, \ \rho(x, x') < \delta(\varepsilon', x)\}$, where $\delta(\varepsilon', x)$ is determined from condition b) of homotopic continuity; then the family $\{V_{h}(x)\}_{x\in X}$ forms an open covering of space X. Let r be the Lebesgue number of this covering. On β_1 and ζ_0 we impose the following additional condition: $4\beta_1 + 2d_0 < r$. We shall now show that if the numbers $\{e_i\}_{i=1}^{n+1}$, $\{\beta_i\}_{i=1}^n$, d_0 satisfy this additional condition, then \hat{F} satisfies condition 2.

Let $\sigma' \subset \partial \sigma^{i+1}$; then $\hat{F}(x_i) = F^{e_i}(x_i^*) \subset F^{e_{i+1}}(x_{i+1}^*) = \hat{F}(x_{i+1})$, where x_i , x_{i+1} are arbitrary points of the simplices σ^i , σ^{i+1} , respectively; x_i^* , x_{i+1}^* are the companions of the corresponding sets. We estimate the distance between x_i^* and x_{i+1}^{*+1} :

$$\rho(x_i^*, x_{i+1}^*) \le \rho(x_i^*, T^i) + \operatorname{diam} T^i \le 2d_0 + 4\beta_i < r.$$

Hence, there exists a point x_0 such that $F(x_0) \subset F^{\varepsilon'}(x_i^*)$ and $F(x_0) \subset F^{\varepsilon'}(x_{i+1}^*)$.

We now consider the following diagram:

where all the mappings are generated by the corresponding imbeddings. Since the mappings i_j , j = 2, 3, 4, 5 induce isomorphisms of the homotopy groups in the corresponding dimensions, it follows that i_1 induces an isomorphism in these same dimensions. The lemma is proved.

The next assertions follow from Lemma 1.3.17 and Corollaries 1.3.14 and 1.1.15.

<u>1.3.18.</u> THEOREM. If an n-dimensional polyhedron X is contractible to a point and the m-mapping $F:X \rightarrow K(Y)$ is homotopically continuous, then F is ϵ -selectable.

<u>1.3.19.</u> THEOREM. If the m-mapping $F:X \to K(Y)$ is homotopically continuous and $\pi_j(F(x)) = 0$, $j\in \overline{0, n-1}$, for any point $x\in X$, then F is ε -selectable on any finite n-dimensional polyhedron.

It is easy to see that semicontinuous and closed m-mappings do not admit, generally speaking, continuous sections. Single-valued approximations open the way to the study of their properties.

Let (X, ρ_X), (Y, ρ_Y) be metric spaces. We define a metric ρ in the product of the spaces X × Y by the equality

 $\rho((x, y), (x', y')) = \max\{\rho_X(x, x'); \rho_Y(y, y')\}.$

 $\frac{1.3.20. \text{ Definition.}}{\text{C(Y)}, \text{ where } \epsilon > 0, \text{ is called a multivalued ϵ-approximation of the m-mapping F if} I = 0.5 \text{ and $F_{\epsilon}:X \to C(Y)$}$

$$\rho_* (\Gamma_X (F_{\varepsilon}), \Gamma_X (F)) = \sup_{z \in \Gamma_X (F_{\varepsilon})} \rho(z, \Gamma_X (F)) < \varepsilon,$$

i.e., the graph $\Gamma_X(F_{\varepsilon})$ belongs to an ε -neighborhood of the graph $\Gamma_X(F)$.

If F_{ε} is a single-valued continuous mapping, then it is said that it is a single-valued ε -approximation of the m-mapping F. The question of the existence of single-valued ε -approximations is important for applications. This can be illustrated by the following example.

Let (X, ρ_X) be a compact metric space, let (Y, ρ_Y) be a metric space, and let $F:X \to C(Y)$ be a closed m-mapping; let y_0 be an arbitrary point of Y.

<u>1.3.21</u>. THEOREM. If for any $\varepsilon > 0$ there exists a single-valued ε -approximation $f_{\varepsilon}: X \to Y$ of the m-mapping F such that the equation $f_{\varepsilon}(x) = y$ has a solution, then there exists a point $x_0 \in X$, which is a solution of the operator inclusion $y_0 \in F(x)$.

The next assertion [70] is one of the basic results on the existence of single-valued ϵ -approximations.

<u>1.3.22.</u> THEOREM. Let X be a metric space, and let Y be a metric lcs. Then any upper semicontinuous m-mapping $F:X \rightarrow Cv(Y)$ for any $\varepsilon > 0$ possesses an ε -approximation $f_{\varepsilon}:X \rightarrow Y$ such that

$$f_{e}(X) \subset \operatorname{co} F(X)$$