$$
\varphi(x)=\max _{y \in_{\Phi(x)}} f(x, y)
$$

is continuous, and the m-mapping $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{K}(\mathrm{Y})$

$$
F(x)=\{y \mid y \in \Phi(x), f(x, y)=\varphi(x)\}
$$

is upper semicontinuous.

3. Continuous Sections and Single-Valued Approximations of m-Mappings

Let X, Y be topological spaces, and let $f: X \rightarrow Y$ be an m-mapping.
1.3.1. Definition. A continuous, single-valued mapping $f: X \rightarrow Y$ is called a continuous section of an m-mapping if

$$
f(x) \in F(x)
$$

for all $x \in X$.
The existence of continuous sections is closely connected with lower semicontinuity of a multivalued mapping. The following assertion characterizes this fact.
1.3.2. THEOREM. Let $F: X \rightarrow P(Y)$ be an m-mapping. If for any points $x \in X$ and $y \in F(x)$ there exists a continuous section $f: X \rightarrow Y$ of the m-mapping F such that $f(x)=y$, then F is a lower semicontinuous m-mapping.

Michael's theorem is one of the basic results of the theory of continuous sections which has found many applications.
1.3.3. THEOREM. The following properties of a T_{1}-space X are equivalent:
a) X is paracompact;
b) if Y is a Banach space, then each lower semicontinuous m-mapping $F: X \rightarrow C v(Y)$ has a continuous section.
The proof of Theorem 1.3 .3 is based on the following assertion.
1.3.4. LEMMA. Let X be a paracompact space, and let Y be a normal space; let $F: X \rightarrow$ $\operatorname{Cv}(Y)$ be a lower semicontinuous m-mapping; then for any $\varepsilon>0$ there exists a continuous single-valued mapping $f_{\varepsilon}: X \rightarrow Y$ such that $f_{\varepsilon}(x) \in U_{\varepsilon}(F(x))$ for any $x \in X$.

This mapping f_{ε} is naturally called an ε-section of the m-mapping F.
There are many examples which show that the conditions of completeness of the space V , closedness and convexity of the range of the m-mapping F, and the condition of lower semicontinuity of this mapping are essential for the existence of a continuous section. However, it is obvious that there sxist m-mappings which are not lower semicontinuous but have a continuous section. We shall consider the problem of the existence of a continuous section in terms of the local structure of m-mappings (see [22]).

Let X be a metric space, Y be a convex compact subset of the Banach space E, and let $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Kv}(\mathrm{Y})$ be some m-mapping. We set $F^{g}(x)=U_{\mathrm{s}}(F(x)) \mathrm{I}_{\mathrm{K}}$. For each point $x_{0} \in X$ we def ine the set $L(F)\left(x_{0}\right)$ by the rule

$$
L(F)\left(x_{0}\right)=\bigcap_{\varepsilon>0}\left(\overline{\bigcup_{\delta>0}\left(\prod_{E^{O_{\delta}}\left(x_{0}\right)} F^{\varepsilon}(x)\right.}\right)
$$

1.3.5. THEOREM. In order that an m-mpping $F: X \rightarrow K V(Y)$ have an ε-section for any $\varepsilon>0$ it is necessary and sufficient that $L(F)\left(x_{0}\right) \neq 0$ for any $x_{0} \in X$.

We remark that nonemptiness of the set $L(G)(x)$ for any $x \in X$ does not yet guarantee the presence of a continuous section of an mapping F.

We consider iterations of L :

$$
L^{0}(F)=F, L^{n}(F)=L\left(L^{n-1}(F)\right), n \geqslant 1
$$

We continue this process for each cransfinite number of first type, while for a transfinite number of second type we set

$$
L^{\alpha}(F)(x)=\bigcap_{i<\alpha} L^{\beta}(F)(x) .
$$

We shall say that the sequence $\left\{L^{\alpha}(F)\right\}$ stabilizes at step α_{0} if

$$
L^{\alpha_{0}}(F)(x)=L^{\alpha_{0}+1}(F)(x)
$$

for any $x \in X$.
1.3.6. THEOREM. In order that an m-mapping $F: X \rightarrow K v(Y)$ have a continuous section it is necessary and sufficient that the sequence $\left\{L^{\alpha}(F)\right\}$ stabilize at some transfinite step α_{0} and $\mathrm{E}^{\alpha_{0}}(\mathrm{~F})(\mathrm{x}) \neq \emptyset$ for any $x \in \mathcal{K}$.

If we consider m-mappings with nonconvex ranges, then the problem of the existence of a continuous section becomes much more difficult. It is possible to give an example of a continuous m-mapping with a contractible range not having a continuous section.
1.3.7. Example. Suppose the mapping $F:[-1,1] \rightarrow K\left(\mathbb{R}^{2}\right)$ is defined by the rule

$$
F(x)=\left\{\begin{array}{l}
{\left[\frac{1}{\left[\frac{1}{2} x, x\right]} \text {, if } \quad x \neq 0,\right.} \\
\{(0, y) \mid-1 \leqslant y \leqslant 1\}, \quad \text { if } \quad x=0,
\end{array}\right.
$$

where $\Gamma_{\left[\frac{1}{2} x, x\right]}$ is the graph of the function $y=\sin \frac{1}{x}$ on the interval $\left[\frac{1}{2} x, x\right]$. This mapping has an ε-section for any $\varepsilon>0$ but it does not have a continuous section.

We shall construct an obstruction to the ε-section property of one class of m-mappings.
Let X be a compact metric space, and let Y be a metric space.
1.3.8. LEMMA. Let $F: X \rightarrow P(Y)$ be a lower semicontinuous m-mapping with nonempty compact images. Then for any numbers $\varepsilon>0, \beta>0$ there is a positive number $\alpha=\alpha(\varepsilon, \beta)$ such that in a β-neighborhood of any set T of diameter less than α there is a point x_{0} such that $F\left(x_{0}\right) \subset F_{\mathrm{s}}(x)=U_{\mathrm{s}}(F(x))$ for any $x \in T$.

We call a point $x_{0} \in X$ satisfying the conditions of Lemma 1.3 .8 a companion of the set T.
Let X be a finite polyhedron of dimension n, let Y be a compact metrix space, and let $F: X \rightarrow K(Y)$ be an m-mapping with nonempty compact images.
1.3.9. Definition. We call ar m-mapping $\hat{\mathrm{F}}: \hat{\mathrm{X}} \rightarrow \mathrm{K}(\mathrm{Y})$ a steplike ε-approximation of the m-mapping F if there exists a triangulation \mathscr{K} of the polyhedron X such that the following conditions are satisfied.
a) $\hat{F}(x) \subset F^{\varepsilon}(x)$ for any $x \in X$;
b) on any simplex of of the triangulation \mathscr{r} the m-mapping \hat{F} is constant, i.e., $\hat{F}(x)=A_{i}$ for any $x \in \sigma^{i}$,
c) if $\sigma^{i} \subset \partial \sigma^{j}$, then $\dot{F}(x) \subset \hat{F}(y)$ for $x \in \sigma^{i}, y \in \sigma^{j}$.
1.3.10. THEOREM. Let $T: X \rightarrow K(Y)$ be a lower semicontinuous m-mapping with nonempty compact images. Then for any $\varepsilon>0$ the m-mapping F has a steplike ε-approximation \hat{F}.

Proof. We consider sequences of numbers $\left\{\varepsilon_{i}\right\}_{i=1}^{n+1},\left\{\beta_{i}\right\}_{i=1}^{n}$ and a number $\dot{\alpha}_{0}$ satisfying the following relations:

$$
\begin{gathered}
0<\varepsilon_{1}<\varepsilon_{2}<\ldots<\varepsilon_{n}<\varepsilon_{n+1}<\varepsilon, \\
0<\beta_{i+1}<\frac{1}{4} \beta_{i}, \quad 4 \beta_{i+1}+2 a_{0}<x\left(\varepsilon_{i+1}-\varepsilon_{i} ; \beta_{i}\right),
\end{gathered}
$$

where $i=1,2, \ldots, n$. We reath that such sequences can always be constructed for any number $\varepsilon>0$ in the foliowing manner: the sequence $\left\{\varepsilon_{i}\right\}_{t=1}^{n+1}$ is prescribed arbitrarily, while the construction of $\left\{\beta_{\}_{i=1}^{n}}^{n}\right.$ and d_{0} is zealized by beginning with β_{1} and proceeding upward along the inequalities.

We triangulate the polyhedron finely that the diameter of each simplex is less than min $\left(\alpha_{0} ; \alpha\left(\varepsilon_{n+1}-\varepsilon_{n} ; \beta_{n}\right)\right)$. This triangulation is the desired triangulation \mathscr{K}°. We construct the m-mapping \hat{E} successively, beginning with simplices of dimension n.

Let σ^{n} be an n-dimensional simplex of the triangulation \mathscr{K}; then diam $\sigma^{n}<\alpha\left(\varepsilon_{\beta+1}-\varepsilon_{n}, \beta_{n}\right)$, and hence in a β_{n} neighborhood of f^{n} there is a companion of this symplex - a point $x^{*}-$ such that $F\left(x^{*}\right) \subset F^{\varepsilon_{n+1}-e_{n}}(x)$ for any $x \mathcal{G O}^{f}$. Then $F^{\varepsilon_{n}}\left(x^{*}\right) \subset F^{\varepsilon_{n+1}}(\ddot{F})$, and hence the set $A=F^{\varepsilon_{n}}\left(x^{*}\right) \subset F^{\varepsilon_{n+1}}(x)$. We now set $\hat{F}(x)=A$ for any $x \cos ^{n}$. We carry out analogous constructions with all n-dimensional simplices of the triangulation ${ }^{2}$.

We consider an ($n-1$)-dimensional simplex σ^{n-1}. Suppose this simplex is the face of the n-dimensional simplices $\sigma_{1}^{n}, \sigma_{2}^{n}, \ldots, \sigma_{k}^{n} \cdot$. Let the points $x_{1}^{*}, x_{2}^{*}, \ldots, x_{k}^{*}$ be the companions of the corresponding n-dimensional simplices. We set $T^{n-1}=\sigma^{n-1} U\left(\bigcup_{i=1}^{k} x_{i}^{*}\right)$; we shall estimate the diameter of this set:

$$
\operatorname{diam} T^{n-1}<2 d_{0}+2 \beta_{n}<\alpha\left(\varepsilon_{n}-\varepsilon_{n-1}, \beta_{n-1}\right)
$$

Hence there exists a point $x^{*} \in U_{\beta_{n-1}}\left(T^{n-1}\right)$ - a companion of chis set - such that $F\left(x^{*}\right) \subset F^{\varepsilon_{n}-\varepsilon_{n-1}}(x)$ for any $x \in T^{n-1}$, i.e.,

$$
\begin{array}{ccc}
F^{\varepsilon_{n-1}}\left(x^{*}\right) \subset F^{\varepsilon_{n}}(x) & \text { for any } & x \in \sigma^{n-1} \\
F^{\varepsilon_{n-1}}\left(x^{*}\right) \subset F^{\varepsilon_{n}}\left(x_{i}^{*}\right)=A_{i} & \text { for any } & i=1,2, \ldots, k .
\end{array}
$$

We set $F^{\varepsilon_{n-1}}\left(x^{*}\right)=A$, and we set $\hat{F}(x)=A$ for any $x \in \sigma^{n-1}$. We define \hat{F} similarly for the remaining ($n-1$)-dimensional simplices.

Suppose the m-mapping \hat{F} has been constructed on simplices of dimension $n, n-1, \ldots, k+$ 1.

We now consider a k-dimensional simplex σ^{k}. Suppose this simplex is a factor of the ($k+1$)-dimensional simplices $\sigma_{1}^{k+1}, \sigma_{2}^{k+1}, \ldots, \sigma_{s}^{k+1}$ and the points $x_{1}^{*}, x_{2}^{*}, \ldots, x_{s}^{*}$ are the companions of these simplices. We set $T^{k}=\sigma^{k} U\left(\bigcup_{i=1}^{s} x_{i}^{*}\right)$. In this case

$$
\operatorname{diam} T^{k} \leqslant 2 d_{0}+2 \beta_{n}+\ldots+2 \beta_{k+1} \leqslant 2 d_{0}+3 \beta_{k_{+1}}<\alpha\left(\varepsilon_{k+1}-\varepsilon_{k}, \rho_{k}\right)
$$

Then there is a point $x^{*} \in U_{\beta_{k}}\left(T^{k}\right)$, which is a companion of this set, such that $F\left(x^{*}\right) \subset F^{\varepsilon_{k+1}-\varepsilon_{k}}(x)$ for any $x \in T^{k}$, i.e.,

$$
\begin{gathered}
F^{\varepsilon_{k}}\left(x^{*}\right) \subset F^{\varepsilon_{k+1}}(x) \quad \text { for any } \quad x \in \sigma^{k^{\prime}} \\
F^{\varepsilon_{k}}\left(x^{*}\right) \subset F_{k+\frac{1}{}}^{\varepsilon}\left(x_{i}^{*}\right)=A_{i} \quad \text { for any } \quad i=1,2, \ldots, s .
\end{gathered}
$$

We set $F^{\varepsilon}{ }_{k}\left(x^{*}\right)=A$ and $\hat{F}(x)=A$ for any $x \in \sigma^{k}$. We define \hat{F} similarly for all the remaining k-dinensional simplices and in the remaining dimensions. The m-mapping constructed \hat{F} satisfies all the conditions of the theorem. The theorem is proved.

Ara analogous construction for steplike ε-approximations of upper semicontinuous m-mappings was proved in the work [31] and found further development in the works [11, 23].

We note that any section of an m-mapping \hat{F} is an ε-section of the m-mapping F. Hence, in order that F be ε-selective, it suffices to prove selectivity of steplike ε-approximations \vec{F}. We shall now construct an obstruction to the existence of continuous actions of the m-mapping \hat{F} (see also [18]).

Suppose some triangulation \mathscr{H} is fixed on the polyhedron X. We consider an m-mapping $\hat{F}: X \rightarrow P(Y)$ satisfying the following conditions:

1) on any simplex σ^{i} of the triangulation \mathscr{F} the m-mapping \hat{F} is constant;
2) if $\sigma^{i} \subset \partial \sigma^{i+1}$, then $\hat{F}\left(\sigma^{l}\right) \subset \hat{F}\left(\sigma^{i+1}\right)$, and the inclusion mapping induces an isomorphism of the homotopy groups in dimensions $j=0,1, \ldots, n-1$;
3) the sets $\hat{F}(x)$ for any $x \in X$ are $(n-1)$-simple.

Then the following lemma holds.
1.3.11. LEMMA. If the polyhedron X is linearly connected, then for any two sets $\hat{F}\left(\sigma_{1}^{k_{1}}\right)$ and $\hat{F}\left(\sigma_{2}^{k_{x}}\right)$ there exists an isomorphism $i_{12}: \pi_{j}\left(\dot{F}\left(\sigma_{1}^{k_{1}}\right) \rightarrow \pi_{j}\left(\hat{F}\left(\sigma_{2}^{k_{2}}\right)\right), 0 \leqslant j \leqslant n-1\right.$. If the polyhedron is simyly connected, then the isomorphism i_{12} is canonical, i.e., for any set \hat{F} ($\sigma_{3}^{k_{3}}$) the following diagram is commutative:

We note that in the case $\pi_{j}\left(\hat{F}\left(\sigma^{k}\right)\right)=0$ for $0 \leqslant j \leqslant n-1$ the trivial isomorphism i_{12} is canonical for any polyhedron X.

Suppose the polyhedron X and the m-mapping \hat{F} are such that the homomorphism $i_{12}: \pi_{y}\left(\hat{F}\left(\sigma_{1}^{k_{1}}\right)\right) \rightarrow$ is canonical for $j=0,1, \ldots, n-1$. Suppose a continuous section f of the m-mapping \hat{F} is defined on the $(\ell-1)$-skeleton $\mathscr{K}^{(t-1)}$ of the polyhedron \mathscr{H}. We construct an obstruction to the continuation of this section to the ℓ-skeleton $\mathscr{K}^{(l)}$.

Let σ^{ℓ} be an arbitrary ℓ-dimensional simplex. We consider the composition of mappings

$$
S^{l-1} \xrightarrow[\rightarrow]{x} \partial \sigma^{l} \xrightarrow{f} \hat{F}\left(\sigma^{l}\right)
$$

where x is an arbitrary homeomorphism. Then to the simplex σ^{l} it is possible to assign an element $[f \circ x]$ of the homotopy group $\pi_{l-1}\left(\hat{F}\left(\sigma^{l}\right)\right)$. We fix some set $\hat{F}\left(\sigma^{s_{0}}\right)$ and denote it by Y_{3}. Then by Lemma 1.3 .11 there exists a canonial isomorphism $i: \pi_{l-1}\left(\hat{F}\left(\sigma^{l}\right)\right) \rightarrow \pi_{l-1}\left(Y_{0}\right)$. We assign to the simplex σ^{ℓ} the element $i([f \circ r]) \in \pi_{l-1}\left(Y_{0}\right)$.

A mapping of set of ℓ-dimensional simplices of the polyhedron \mathscr{K} into the group $\pi_{\ell-1}\left(\mathrm{Y}_{0}\right)$ has thus been constructed.

By extending this mapping to ℓ-dimensional chains, we obtain a cochain $c_{f}^{l} \mathbb{E}^{i}\left(\mathscr{K}^{f}, \pi_{l-1}\left(Y_{0}\right)\right)$.
1.3.12. Definition. The cochain $\mathrm{c}_{\mathrm{f}}^{\ell}$ is called an ℓ-obstruction to the continuation of the section f.

The obstruction c_{f}^{ℓ} possesses properties analogous to the properties of a classical obstruction.
1.3.13. THEOREM. The obstruction ${\underset{f}{f}}_{\ell}^{\ell}$ is a cocycle. If the cocycle c_{f}^{ℓ} is homotopic to zero, then there exists a mapping which is a section of the m-mapping \hat{F} onto the ($\ell-1$)dimensional skeleton $\mathscr{H}^{(l-1)}$ coincides with f on $\mathscr{F}^{(t-2)}$, and can be continued as a section of \hat{F} to $\mathscr{H}^{(l)}$.
1.3.14. COROLLARY. If the polyhedron X is contractible to a point and the m-mapping \hat{F} satisfies conditions 1,2 , and 3 , then the mapping \hat{F} has a continuous section.

Proof. The section f is constructed inductively over the skeletons of the polyhedron X.
We consider the zero-dimensional skeleton $\mathscr{\mathscr { K }}{ }^{(0)}$. Let σ^{0} be an arbitrary zero-dimensional simplex; then for the image $f\left(\sigma^{0}\right)$ it is possible to take an arbitrary point in the set $\hat{F}\left(\sigma^{0}\right)$.

We suppose that the mapping f is a section of $\hat{\mathrm{F}}$ on the skeleton $\mathscr{F}^{(l-1)}, l>1$. We consider the obstruction $c_{f}^{l} \in C^{l}\left(\mathscr{K}, \pi_{l-1}\left(Y_{0}\right)\right)$. Since $H^{\ell}(X, G)=0$ for any group of coefficients G, it follows that $c_{f}^{l} \sim 0$. By Theorem 1.3 .13 there then exists a section $g: \mathscr{F}(l) \rightarrow Y$. Continuing this process, we obtain a section of the m-mapping $\hat{\mathrm{F}}$.
1.3.15. COROLLARY. If $\hat{\mathrm{F}}$ satisfies conditions $1,2,3$ and $\pi_{j}\left(\hat{F}\left(\sigma^{l}\right)\right)=0, j \in \overline{0, n-1}, l \in \widehat{0, n}$, then a section of the m-mapping \hat{F} exists on any finite n-dimensional polyhedron X.

The proof of this corollary is analogous to the proof of Corollary 1.3.14.
1.3.16. Definition. A lower semicontinuous m-mapping $F: X \rightarrow K(Y)$ with compact images is called homotopically continuous is for any point $x_{0} \in X$ the following conditions are satisfied:
a) there exists $\varepsilon_{0}>0$ such that for any $\varepsilon, 0 \leqslant \varepsilon \leqslant \varepsilon_{0}$, the set $F^{\varepsilon}\left(x_{0}\right)$ is ($n-1$)-simple and the inclusion mapping $F\left(x_{0}\right) \leftrightarrow F_{\varepsilon}\left(x_{0}\right)$ induces an isomorphism of the homotopy groups in dimensions $0,1, \ldots, n-1$;
b) for any $\varepsilon, 0<\varepsilon \leqslant \varepsilon_{0}$ there exists $\delta=\delta\left(\varepsilon, x_{0}\right)$ such that if $\rho\left(x, x_{0}\right)<\delta$ the inclusion mapping $F\left(x_{0}\right) c F^{\varepsilon}(x)$ induces an isomorphism of the homotopy groups in dimensions 0 , 1,..., $\mathrm{n}-1$.
We note that if $\pi j\left(F\left(x_{0}\right)\right)=0, j=0,1, \ldots, n-1$, then condition a) implies condition b).
1.3.17. LEMMA. Let $F: X \rightarrow K(Y)$ be a homotopically continuous m-mapping; then the mmapping has a steplike ε-approximation $\hat{F}, 0<\varepsilon<\varepsilon_{0}$ satisfying conditions 1,2 , 3 .

Proof. We construct a steplike ε-approximation using the construction of Theorem 1.3.10. That conditions 1 and 3 are satisfied follows from the definition of homotopic continuity and the construction of a steplike ε-approximation. We shall prove that condition 2 is satisfied. Let $0<\varepsilon<\varepsilon_{0}$; we consider a positive number $\varepsilon^{\prime}<\varepsilon_{1}$. We set $V_{n}(x)=\left\{x^{\prime} \mid X^{\prime} \in X, \rho\left(x, x^{\prime}\right)<\delta\left(\varepsilon^{\prime}\right.\right.$. $\mathrm{x})\}$, where $\delta\left(\varepsilon^{\prime}, \mathrm{x}\right)$ is determined from condition b) of homotopic continuity; then the family
$\left\{V_{n}(x)\right\}_{x \in} \mathcal{E}^{x}$ forms an open covering of space X. Let r be the Lebesgue number of this covering. 0 K. β_{1} and ζ_{0} we impose the following additional condition: $4 \beta_{1}+2 d_{0}<r$. We shall now show that if the numbers $\left\{\varepsilon_{i}\right\}_{i=1}^{n+1},\left\{\beta_{i}\right\}_{i=1}^{n}, d_{0}$ satisfy this additional condition, then \hat{F} satisfies condithon 2.

Let $\sigma^{\prime}-\partial \sigma^{i+1}$; then $\hat{F}\left(x_{i}\right)=F^{\varepsilon_{i}}\left(x_{i}^{*}\right) \subset F^{\varepsilon_{i+1}}\left(x_{i+1}^{*}\right)=\hat{F}\left(x_{i+1}\right)$, where $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}$ are arbitrary points of the simplices σ^{i}, σ^{i+1}, respectively; x_{i}^{*}, x_{i+1}^{*} are the companions of the corresponding sets. We estimate the distance between x_{i}^{*} and x_{i+1}^{*} :

$$
\rho\left(x_{i}^{*}, x_{i+1}^{*}\right) \leqslant \rho\left(x_{i}^{*}, T^{i}\right)+\operatorname{diam} T^{i} \leqslant 2 d_{0}+4 \beta_{i}<r
$$

Hence, there exists a point x_{0} such that $F\left(x_{0}\right) \subset F^{\varepsilon^{\prime}}\left(x_{i}^{*}\right)$ and $F\left(x_{0}\right) \subset F^{\varepsilon^{\prime}}\left(x_{i+1}^{*}\right)$.
We now consider the following diagram:

Where all the mappings are generated by the corresponding imbeddings. Since the mappings $i_{j}, j=2,3,4,5$ induce isomorphisms of the homotopy groups in the corresponding dimensions, it follows that i_{1} induces an isomorphism in these same dimensions. The lemma is proved.

The next assertions follow from Lemma 1.3 .17 and Corollaries 1.3 .14 and 1.1.15.
1.3.18. THEOREM. If an n-dimensional polyhedron X is contractible to a point and the m-mapping $F: X \rightarrow K(Y)$ is homotopically continuous, then F is ε-selectable.
1.3.19. THEOREM. If the m-mapping $F: X \rightarrow K(Y)$ is homotopically continuous and $\pi_{j}(F(x))=$ 0 , $j \in \overline{0, n-1}$, for any point $x \in X$, then F is ε-selectable on any finite n-dimensional polyhedron.

It is easy to see that semicontinuous and closed m-mappings do not admit, generally speaking, continuous sections. Single-valued approximations open the way to the study of their properties.

Let (X, ρ_{X}), (Y, ρ_{Y}) be metric spaces. We define a metric ρ in the product of the spaces $X \times Y$ by the equality

$$
\rho\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{\rho_{x}\left(x, x^{\prime}\right) ; \rho_{Y}\left(y, y^{\prime}\right)\right\}
$$

1.3.20. Definition. Let $F: X \rightarrow C(Y)$ be some m-mapping. A multivalued mapping $F_{\varepsilon}: X \rightarrow$ $C(Y)$, where $\varepsilon>0$, is called a multivalued ε-approximation of the m-mapping F if

$$
\rho_{*}\left(\Gamma_{X}\left(F_{\varepsilon}\right), \Gamma_{X}(F)\right)=\sup _{z \in \Gamma_{X}\left(F_{\varepsilon}\right)} \rho\left(z, \Gamma_{X}(F)\right)<\varepsilon
$$

i.e., the graph $\Gamma_{X}\left(F_{\varepsilon}\right)$ belongs to an ε-neighborhood of the graph $\Gamma_{X}(F)$.

If F_{ε} is a single-valued continuous mapping, then it is said that it is a single-valued ε-approximation of the m-mapping F. The question of the existence of single-valued ε-approximations is important for applications. This can be illustrated by the following example.

Let (X, ρ_{X}) be a compact metric space, let (Y, ρ_{Y}) be a metric space, and let $F: X \rightarrow C(Y)$ be a closed m-mapping; let y_{0} be an arbitrary point of Y.
1.3.21. THEOREM. If for any $\varepsilon>0$ there exists a single-valued ε-approximation $f_{\varepsilon}: X \rightarrow$ Y of the m-mapping F such that the equation $f_{\varepsilon}(x)=y$ has a solution, then there exists a point $x_{0} \in X$, which is a solution of the operator inclusion $y_{0} \in F(x)$.

The next assertion [70] is one of the basic results on the existence of single-valued ε-approximations.
1.3.22. THEOREM. Let X be a metric space, and let Y be a metric lcs. Then any upper semicontinuous m-mapping $F: X \rightarrow C V(Y)$ for any $\varepsilon>0$ possesses an ε-approximation $f_{\varepsilon}: X \rightarrow Y$ such that

$$
f_{e}(X) \subset \operatorname{co} F(X)
$$

